Classic genetic algorithm vs. genetic algorithm with aggressive mutation for feature selection for a brain-computer interface
نویسندگان
چکیده
The classic genetic algorithm has been successfully applied to many optimization problems. However, its usefulness is limited when it comes to feature selection, particularly if a high reduction rate is expected. The algorithm, in its classic version, returns feature sets containing approximately 50% of the total number of features. In order to decrease this rate, a penalty term penalizing individuals of too many features is often added to the fitness function. This solution seems to be reasonable but, as will be shown in this paper, provides only a slight improvement in the reduction rate. In order to obtain a satisfactory classification accuracy and a high reduction rate, not only the fitness function but also other algorithm elements must be reconsidered. Streszczenie. Klasyczny algorytm genetyczny był z powodzeniem stosowany w wielu problemach optymalizacyjnych, jednakże jego użyteczność jest ograniczona w problemach selekcji cech, zwłaszcza jeżeli wymagana jest wysoka stopa redukcji cech. Algorytm, w jego klasycznej wersji, zwraca zbiory cech zawierające około 50% pierwotnej liczby cech. W celu zmniejszenia tej liczby, do funkcji przystosowania algorytmu dołącza się często człon kary, karzący osobniki kodujące zbiory o zbyt dużej liczbie cech. Takie rozwiązanie wydaje się być rozsądne, ale, jak zostanie to przedstawione w artykule pozwala jedynie na niewielką poprawę stopy redukcji. Stąd, w celu uzyskania satysfakcjonującej dokładności klasyfikacji i wysokiej stopy redukcji, nie tylko funkcja przystosowania, ale również inne elementy algorytmu muszą zostać wzięte pod uwagę (Klasyczny algorytm genetyczny, a algorytm z agresywną mutacją w procesie selekcji cech na potrzeby interfejsu mózg-komputer).
منابع مشابه
Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کامل